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But first, 
One final useful statistical technique from Part II



Confidence Intervals

Motivation: p-values tell a nice succinct story but neglect a lot of information.

Estimating a point, approximated as normal (e.g. error or mean)

find CI% based on standard normal distribution   (i.e. CI% = 95, z = 1.96)



Resampling Techniques Revisited

The bootstrap

● What if we don’t know the distribution?



Resampling Techniques Revisited

The bootstrap

● What if we don’t know the distribution?
● Resample many potential distributions based on the observed data and find 

the range that CI% of the data fall in (e.g. mean). 

Resample: for each i in n observations, put all observations in a hat and draw one 
(all observations are equally likely). 



Clustering and Prediction
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Clustering and Prediction
(now back to our regularly scheduled program)

I. Probability Theory

II. Discovery: Quantitative Research Methods

III.
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M < ~5     or  m << n
                    (much less)

M > ~100  or m � n or m >> n
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Overfitting (1-d example)

Underfit Overfit
High Bias High Variance
(image credit: Scikit-learn; in practice data are rarely this clear)



Common Goal: Generalize to new data

Original Data New Data?

Does the 
model hold up?

Model
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Common Goal: Generalize to new data

Training 
Data

Testing Data

Does the 
model hold up?

Model

Develo-
pment
Data

Model

Set training 
parameters



Feature Selection / Subset Selection

Forward Stepwise Selection:

● start with current_model just has the intercept (mean)
remaining_predictors = all_predictors

● for i in range(k)
#find best p to add to current_model:
for p in remaining_prepdictors

refit current_model with p
       #add best p, based on RSSp to current_model

#remove p from remaining predictors



Regularization (Shrinkage)

No selection (weight=beta) forward stepwise

Why just keep or discard features? 



Regularization (L2, Ridge Regression)

Idea: Impose a penalty on size of weights:

Ordinary least squares objective:

Ridge regression:
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Regularization (L2, Ridge Regression)

Idea: Impose a penalty on size of weights:

Ordinary least squares objective:

Ridge regression:

In Matrix Form:

I: m x m identity matrix



Regularization (L1, The “Lasso”)

Idea: Impose a penalty and zero-out
  some weights

The Lasso Objective:

No closed form matrix solution, but 
often solved with coordinate descent.

Application:  m ≅ n   or   m >> n



Regularization Comparison



Review, 3/31 - 4/5

● Confidence intervals

● Bootstrap

● Prediction Framework: Train, Development, Test

● Overfitting: Bias versus Variance

● Feature Selection: Forward Stepwise Regression

● Ridge Regression (L2 regularization)

● Lasso Regression (L1 regulatization)



Common Goal: Generalize to new data

Training 
Data

Testing Data

Does the 
model hold up?

Model

Develo-
pment

Model
Set parameters



N-Fold Cross-Validation

Goal: Decent estimate of model accuracy

train testdev

All data

train testdev train

train testdev train

...

Iter 1

Iter 2

Iter 3

….



Supervised vs. Unsupervised

Supervised

● Predicting an outcome
● Loss function used to characterize quality of prediction



Supervised vs. Unsupervised

Supervised

● Predicting an outcome
● Loss function used to characterize quality of prediction

Unsupervised

● No outcome to predict
● Goal: Infer properties of                without a supervised loss function.
● Often larger data. 
● Don’t need to worry about conditioning on another variable.



K-Means Clustering

Clustering: Group similar observations, often over unlabeled data.

K-means: A “prototype” method 
(i.e. not based on an algebraic model). 

Euclidean Distance:

centers = a random selection of k cluster centers

until centers converge:

1. For all x
i
, find the closest center (according to d)

2. Recalculate centers based on mean of euclidean distance



Review 4-7

● Cross-validation

● Supervised Learning

● Euclidean distance in m-dimensional space

● K-Means clustering



K-Means Clustering

Understanding K-Means

(source: Scikit-Learn)



Dimensionality Reduction - Concept



Dimensionality Reduction - PCA

Linear approximates of data in q dimensions.

Found via Singular Value Decomposition:

X = UDVT



Review 4-11

● K-Means Issues

● Dimensionality Reduction

● PCA

○ What is V (the components)?

○ Percentage variance explained





Classification: Regularized Logistic Regression 
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(y is a class label)



Classification: Naive Bayes

Bayes classifier: choose the class most likely according to P(y|X). 
(y is a class label)

Naive Bayes classifier: Assumes all predictors are independent given y. 



Classification: Naive Bayes

Bayes Rule: 

P(A|B) = P(B|A)P(A) / P(B)



Classification: Naive Bayes

Posterior

Prior

Likelihood
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Classification: Naive Bayes

Maximum a Posteriori (MAP): Pick the class with the maximum posterior 
probability.

Unnormalized Posterior

Posterior

Prior

Likelihood
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Assume P(X|Y) is Normal

Then, training is:

1. Estimate P(Y = k);   Ṑ
k
 = count(Y = k) / Count(Y = *)

2. MLE to find parameters (Ṍ, ḙ) for each class of Y.
(the “class conditional distribution”) 
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Gaussian Naive Bayes

Assume P(X|Y) is Normal

Then, training is:

1. Estimate P(Y = k);   Ṑ
k
 = count(Y = k) / Count(Y = *)

2. MLE to find parameters (Ṍ, ḙ) for each class of Y.
(the “class conditional distribution”) 



Example Project

https://docs.google.com/presentation/d/1jD-FQhOTaMh82JRc-p81TY1QCUbtpKZGwe5U4A3gml8/

https://docs.google.com/presentation/d/1jD-FQhOTaMh82JRc-p81TY1QCUbtpKZGwe5U4A3gml8/edit#slide=id.p
https://docs.google.com/presentation/d/1jD-FQhOTaMh82JRc-p81TY1QCUbtpKZGwe5U4A3gml8/edit#slide=id.p


Review: 4-14, 4-19

● Types of machine learning problems

● Regularized Logistic Regression

● Naive Bayes Classifier

● Implementing a Gaussian Naives Bayes

● Application of probability, statistics, and prediction for measuring county 

mortality rates from Twitter.



Gaussian Naive Bayes

Assume P(X|Y) is Normal

Then, training is:

1. Estimate P(Y = k);   Ṑ
k
 = count(Y = k) / Count(Y = *)

2. MLE to find parameters (Ṍ, ḙ) for each class of Y.
(the “class conditional distribution”) 

Maximum a Posteriori (MAP): Pick the class with the maximum posterior 
probability.



MLE: For which parameters does the observed data have the highest probability.

Gaussian Naive Bayes

Unnormalized Posterior

Maximum a Posteriori (MAP): Pick the class with the maximum posterior 
probability.



Gaussian Naive Bayes

Assume P(X|Y) is Normal

Then, training is:

1. Estimate P(Y = k);   Ṑ
k
 = count(Y = k) / Count(Y = *)

2. MLE to find parameters (Ṍ, ḙ) for each class of Y.
(the “class conditional distribution”) 

Unnormalized Posterior
Without knowing P(X), 

can we turn this into the 
(normalized) posterior?

Maximum a Posteriori (MAP): Pick the class with the 
maximum posterior probability.



Use the Law of Total Probability, for all i = 1 ... k, where A1 ... Ak partition Ω:
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Use the Law of Total Probability, for all i = 1 ... k, where A1 ... Ak partition Ω:

Gaussian Naive Bayes

Unnormalized Posterior
Without knowing P(X), 

can we turn this into the 
(normalized) posterior?

Maximum a Posteriori (MAP): Pick the class with the 
maximum posterior probability.



Use the Law of Total Probability, for all i = 1 ... k, where A1 ... Ak partition Ω:

Gaussian Naive Bayesian Inference

Unnormalized Posterior
Without knowing P(X), 

can we turn this into the 
(normalized) posterior?

   discrete

continuous
A is 
“marginalized” 
out



Q: What distinguishes Bayesian inference?  A: Assume a 

Gaussian Naive Bayesian Inference
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Goal: Compute the 
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Types of priors:
● Uninformative (Improper: not a probability (e.g. constant))
● Belief-based

● Conjugate to a likelihood: if the posterior is in the same family as 
the prior. 



Bayesian Inference

Given: 

Goal: Compute the 

Types of priors:
● Uninformative (Improper: not a probability (e.g. constant))
● Belief-based

● Conjugate to a likelihood: if the posterior is in the same family as 
the prior. 

Example: Beta(⍺, ᶔ) is conjugate 
to a Bernoulli likelihood.

https://en.wikipedia.
org/wiki/Conjugate_prior#Table_of_conjuga
te_distributions

https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions
https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions
https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions
https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions
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Given: 

Goal: Compute the 

 -- predictive distribution



Bayesian Inference

Given: 

Goal: Compute the 

 -- predictive distribution

Like a posterior-weighted average of P(Znew|ᶊ)



Review, 4-21

● How to turn an unnormalized posterior into a normalized posterior

● What is Bayesian Inference?

● Typical definition of a posterior

● Predictive Distribution



Bayesian Vs. Frequentist

Bayesian

● Probability is degree of belief
=> can derive probability of many things

● Can estimate probability of parameters
● Can draw inferences about parameter

probability distribution, point estimates, intervals

Frequentist

● Limiting relative frequencies => probability is an observed property
● Parameters fixed and unknown => no need for probability of parameter
● Procedures for long-run frequencies (e.g. 95% CI)
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● Can draw inferences about parameter

probability distribution, point estimates, intervals

Frequentist

● Limiting relative frequencies => probability is an observed property
● Parameters fixed and unknown => no need for probability of parameter
● Procedures for long-run frequencies (e.g. 95% CI)



Bayesian Vs. Frequentist

Pro Bayes:

● Estimating distributions => uncertainty built in 
● No need to choose model; always “admissible”
● Automatic regularization

Con:

● Need to assume prior (even if nothing can obviously work)
● Approximate solutions: tend to be a little less accurate for simple classification 

/ regression problems



Bayesian Vs. Frequentist

Pro Bayes:

● Estimating distributions => uncertainty built in 
● No need to choose model; always “admissible”
● Automatic regularization

Con:

● Need to assume prior (even if nothing can obviously work)
● Approximate solutions: tend to be a little less accurate for simple classification 

/ regression problems

There is at least one 
situation where the model 
performs at least as good as 
any other model. 
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Revisiting N-Fold Cross-Validation

Goal: 
Decent estimate of model accuracy

train testdev

All data

train testdev train

train testdev train

...

Training 
Data

Testing Data

Does the 
model hold up?

Model

Develo
-pment

Data

Model
Set training 
parameters
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Then pick best model and predict ->

test



Revisiting N-Fold Cross-Validation

Goal: 
Decent estimate of model accuracy

train testdev

All data

train testdev train

train testdev train

...

train testdev

All data

train testdev

train

test
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Then pick best model and predict ->
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Revisiting N-Fold Cross-Validation

Goal: 
Decent estimate of model accuracy

train testdev

All data

train testdev train

train testdev train

...

train testdev

All data

train testdev

train

test

dev train

...

train≠

Goal: 
Select a super-reliable penalty (alpha)
(this is overkill)

Then pick best model and predict ->

test

Example: Assignment 3



Introduction Time Series Analysis

Goal: Understanding temporal patterns of data (or real world events)

Common tasks:

● Trend Analysis: Extrapolate patterns over time (typically descriptive).
 

● Forecasting: Predicting a future event (predictive). 
(contrasts with “cross-sectional” prediction -- predicting a different group)



Introduction to Causal Inference (Revisited)

X causes Y          as opposed to         X is associated with Y

Changing X will change the distribution of Y. 

X causes Y                Y causes X
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Spurious Correlations

Extremely common in time-series analysis. 

http://tylervigen.com/spurious-correlations

http://tylervigen.com/spurious-correlations
http://tylervigen.com/spurious-correlations
http://tylervigen.com/spurious-correlations


Introduction to Causal Inference (Revisited)

X causes Y          as opposed to         X is associated with Y

Changing X will change the distribution of Y. 

X causes Y                Y causes X

Counterfactual Model:   Exposed or Not Exposed:     X = 1 or 0

Causal Odds Ratio: 



Simpson’s “Paradox”

Y=1 Y=0 Y=1 Y=0

X=1 .15 .225 .1 .025

X=0 .0375 .0875 .2625 .1125

Z = men Z = women

http://vudlab.com/simpsons/



Autocorrelation

“(a.k.a. Serial correlation).”

Quantifying the strength of a temporal pattern in serial data. 

Requirements:

● Assume regular measurement (hourly, daily, monthly...etc..)
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temporal
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Autocorrelation
Quantifying the strength of a temporal pattern in serial data. 

Which 
have

temporal
patterns?

white noise strong autocorrelation

weak autocorrelation

sinusoidal
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Autocorrelation
Quantifying the strength of a temporal pattern in serial data.

Q: HOW?

 A: Correlate with a copy of self, shifted slightly.

Y = [3, 4, 4, 5, 6, 7, 7, 8]

correlate(Y[0:7], Y[1:8])  #lag=1

correlate(Y[0:-2], Y[2:8])  #lag=2

….



Review, 4-26 and 4-28

● Bayesian verse Frequentist Learning

● Why / when to use Dev within folds of N-Fold CV

● Time series -- what distinguishes

● Causal Inference

● Autocorrelation
○ Type of univariate time series 

○ Lag Plots
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AR Models: 

Linear AR model: 

Notation:



Moving Average

Based on error;   (a “smoothing” technique). 

Q: Best estimator of random data (i.e. white noise)? 
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Moving Average

Based on error;   (a “smoothing” technique). 

Q: Best estimator of random data (i.e. white noise)? 

A: The mean

Simple Moving Average



Moving Average Model

In a regression model (ARMA or ARIMA), we consider error terms 



Moving Average Model

In a regression model (ARMA or ARIMA), we consider error terms 



Moving Average Model

In a regression model (ARMA or ARIMA), we consider error terms 

Notation: 

attributed to “shocks” -- independent, from a normal distribution



ARMA Models

AutoRegressive (AR) Moving Average (MA) Model

ARMA(p, q):

ARMA(1, 1): 

example: Y is sales; error may be effect from coupon or advertising
(credit: Ben Lambert)



Time-series Applications

● ARMA
○ Economic indicators
○ System performance

○ Trend analysis
(often situations where there is a general trend and random “shocks”)

● Univariate Models in General
○ Anomaly Detection
○ Forecasting 
○ Season Trends

○ Signal Processing

● Integration as predictors within multivariate models

statsmodels.tsa.arima_model



Review: 5-3

● Autoregression Model

● Notation

● Simple Moving Average

● Moving Average Model

● ARMA 

● Applications of Time Series Models


