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But first,

One final useful statistical technique from Part |l



Confidence Intervals

Motivation: p-values tell a nice succinct story but neglect a lot of information.

Estimating a point, approximated as normal (e.g. error or mean)
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find Cl% based on standard normal distribution (i.e. Cl% =95, z = 1.96)



Resampling Techniques Revisited

The bootstrap

e \What if we don’t know the distribution?




Resampling Techniques Revisited

The bootstrap

e \What if we don’t know the distribution?
e Resample many potential distributions based on the observed data and find
the range that Cl% of the data fall in (e.g. mean).

Resample: for each i in n observations, put all observations in a hat and draw one
(all observations are equally likely).




Clustering and Prediction

(now back to our regularly scheduled program)



|. Probability Theory

ll. Discovery: Quantitative Research Methods

. Clustering and Prediction

(now back to our regularly scheduled program)



Clustering and Prediction
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Overfitting (1-d example)

Degree 1
MSE = 4.08e-01(+/- 4.25e-01) MSE = 4.32e-02(+/- 7.08e-02) MSE = 1.82e+08(+/- 5.47e+08)

— Model
— True function
e®g Samples

— Model
— True function
e®s Samples

—  Model
—— True function
seg Samples

Underfit Overfit
High Bias High Variance

(image credit: Scikit-learn; in practice data are rarely this clear)



Common Goal: Generalize to new data

Does the
model hold up?

Original Data New Data?




Common Goal: Generalize to new data

Does the
model hold up?

Training Data

Testing Data




Common Goal: Generalize to new data

Training
Data

Does the
model hold up?

Develo-
pment
Data

Set training
parameters

Testing Data




Feature Selection / Subset Selection

Forward Stepwise Selection:

e start with current_model just has the intercept (mean)
remaining_predictors = all_predictors
e foriinrange(k)
#find best p to add to current_model:
for p in remaining_prepdictors
refit current._model with p
#add best p, based on RSSIo to current_model
#remove p from remaining predictors



Regularization (Shrinkage)
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Why just keep or discard features?



Regularization (L2, Ridge Regression)

10

|ldea: Impose a penalty on size of weights:

Ordinary least squares objective:

£ 06|
N m z
o 2
8= argmin;j{Z(yg — Z I;:J-,SJ-)E} 2 04l
i=1 j=1
Ridge regression: 02

D_|:| i i i i
m m 0.0 0z 04 06 08 10

N
Igr'frfgf: _ ﬂrgm-iﬂ,-;’{Z(y; . Z I.r'lj.ﬁjjz + )\Z jf} original weight
i=1 j=1

j=1




Regularization (L2, Ridge Regression)
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Regularization (L2, Ridge Regression)

10

|ldea: Impose a penalty on size of weights:

08

Ordinary least squares objective:
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Regularization (L1, The “Lasso”)

10

Idea: Impose a penalty and zero-out
some weights

The Lasso Objective:

new weight
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No closed form matrix solution, but
often solved with coordinate descent. IR

Application: m=n or m>>n



Regularization Comparison

A



Review, 3/31 - 4/5

Confidence intervals

Bootstrap

Prediction Framework: Train, Development, Test
Overfitting: Bias versus Variance

Feature Selection: Forward Stepwise Regression
Ridge Regression (L2 regularization)

Lasso Regression (L1 regulatization)



Common Goal: Generalize to new data

Training
Data

Does the
model hold up?

Develo-
pment

Set parameters

Testing Data




N-Fold Cross-Validation

Goal: Decent estimate of model accuracy

‘ All data \

lter 1 ‘ train ‘ dev ‘ test ‘

lter 2 ‘ train ‘ dev “ test “ train ‘

lter 3 ‘ train “ dev “ test | train ‘




Supervised vs. Unsupervised

Supervised

e Predicting an outcome E(y| X)
e Loss function used to characterize quality of prediction

L(y.9) = (y — 9)°



Supervised vs. Unsupervised

Supervised

e Predicting an outcome E(y|X)
e Loss function used to characterize quality of prediction

Unsupervised

No outcome to predict
Goal: Infer properties of P(X) without a supervised loss function.

Often larger data.
Don’t need to worry about conditioning on another variable.



K-Means Clustering

Clustering: Group similar observations, often over unlabeled data.

K-means: A “prototype™ method
(i.e. not based on an algebraic model).

Euclidean Distance: d(zi, zy) = J Z(mi}' —x;)? = ||z — @yl

J=1

centers = a random selection of k cluster centers
until centers converge:
1. For all x., find the closest center (according to d)
2. Recalculate centers based on mean of euclidean distance



Review 4-7

e Cross-validation
e Supervised Learning
e Euclidean distance in m-dimensional space

e K-Means clustering



Incorrect Number of Blohs Anisotropicly Distributed Blobs

K-Means Clustering -
Understanding K-Means |
| B
| °°§§§o
(source: Scikit-Learn) | - B




Dimensionality Reduction - Concept




Dimensionality Reduction - PCA

Linear approximates of data in g dimensions.

Found via Singular Value Decomposition:

X =UDV'




Review 4-11

e K-Means Issues
e Dimensionality Reduction
e PCA
o Whatis V (the components)?

o Percentage variance explained



classification scikit-learn

algorithm cheat-sheet

get
more
data

NOT
WORKING

NO

<100K
samples

YES NO

regression
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NOT
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Text WORKING
Data y

My, NO
>50
YES samples
predicting a eg
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predicting a
number of quantity
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known

ust
looking W%
predicting
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YES

NO,

<100K ves
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\ ’

NOT
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should be
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clustering

NOT
WORKING 5
NOT
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10K : : ;
o dimensionality
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Classification: Regularized Logistic Regression

A[B113 LBy

A



Classification: Naive Bayes

Bayes classifier: choose the class most likely according to P(y|X).
(y is a class label)



Classification: Naive Bayes

Bayes classifier: choose the class most likely according to P(y|X).
(y is a class label)

Naive Bayes classifier: Assumes all predictors are independent given y.

P(Y =ylA=a,B=0C =c)=pyla)p(ylb)p(y|c)

Tt

Py|X) =[] P(yI X))
=1



Classification: Bayes

Bayes Rule:

P(y|X) = PIX) P(A|B) = P(B|A)P(A) / P(B)



Classification: Bayes

Prior




Classification: Bayes

rosterior \w&gﬂ;{g ) ]\ Likelihood
Prior m
P(y|X)  P(y, X1, ..., X;n) x P(y) HP(Xi\y)

Maximum a Posteriori (MAP): Pick the class with the ;aximum posterior
probability.

y—argmax P(y HP X;|y)



Classification: Bayes

rosterier \w&l@g ) ]\ Likelihood
Prior m
P(y|X)  P(y, X1, ..., X;n) x P(y) HP(Xi\y)

Maximum a Posteriori (MAP): Pick the class with the h:mximum posterior
probability.

Unnormalizled Posterior

yargmax{ HPXy]




Gaussian Naive Bayes

Assume P(X]Y) is Normal

T

y = argmax P(y) ][ P(xily)
1=1



Gaussian Naive Bayes

Assume P(X]Y) is Normal
Then, training is:

1. Estimate P(Y =k); m,_= count(Y =k) / Count(Y = *)
2. MLE to find parameters (u, o) for each class of Y.
(the “class conditional distribution”)

M

y = argmax Py) ][ P(xily)
1=1



Gaussian Naive Bayes

Assume P(X]Y) is Normal
Then, training is:

1. Estimate P(Y =k); m,_= count(Y =k) / Count(Y = *)
2. MLE to find parameters (u, o) for each class of Y.
(the “class conditional distribution”)

M

y = argmax Py) ][ P(xily)
1=1



Iris versicolor Iris virginica

Gaussian Naive Bayes

Assume P(X]Y) is Normal
Then, training is:

1. Estimate P(Y =k); m,_= count(Y =k) / Count(Y = *)
2. MLE to find parameters (u, o) for each class of Y.
(the “class conditional distribution”)

M

Yy = aryg max P(y) H P(X;|y)
i=1




Example Project

https://docs.google.com/presentation/d/1jD-FQhOTaMh82JRc-p81TY1QCUbtpKZGwe5U4A3gmi8/



https://docs.google.com/presentation/d/1jD-FQhOTaMh82JRc-p81TY1QCUbtpKZGwe5U4A3gml8/edit#slide=id.p
https://docs.google.com/presentation/d/1jD-FQhOTaMh82JRc-p81TY1QCUbtpKZGwe5U4A3gml8/edit#slide=id.p

Review: 4-14, 4-19

e Types of machine learning problems
e Regularized Logistic Regression
e Naive Bayes Classifier

e Implementing a Gaussian Naives Bayes

e Application of probability, statistics, and prediction for measuring county

mortality rates from Twitter.



Iris versicolor Iris virginica

Gaussian Naive Bayes

Assume P(X]Y) is Normal
Then, training is:

1. Estimate P(Y =k); m,_= count(Y =k) / Count(Y = *)
2. MLE to find parameters (u, o) for each class of Y.
(the “class conditional distribution”) A

Maximum a Posteriori (MAP): Pick the class with the maximum osterir
probability.

M

Yy = aryg max P(y) H P(X;|y)
i=1




Iris versicolor Iris virginica
-3 ey - .

Bayes

MLE: For which parameters does the obse ved

L(#) = Hf(Xii 0)

Maximum a Posteriori (MAP): Pick the class with the maximum posterlor |

probability. Unnormalized Posterior

T

Qzargmax HP Xily)
=1




Iris versicolor Iris virginica
_ . -

Gaussian Naive Bayes

Maximum a Posteriori (MAP): Pick the class with the
maximum posterior probability.

Without knowing P(X),
Rtk el <«— Unnormalized Posterior

(normalized) posterior?




Bayes

Use the Law of Total Probability, foralli=1 ... k, where A, ... A, partition Q:

A

Maximum a(tosteriori ( ): Pick the class with the
maximum p

terior probabillity.

Without knowing P(X),
can we turn this into the Bl Unnormalized Posterior

(normalized) posterior?

= argmax HP Xily)
=1

=




Bayes

Use the Law of Total Probability, foralli=1 ... k, where A, ... A, partition Q:
P(B,Ai) _ P(BJA)P(4))
P(B) 30 P(BlA)P(A)

4 piaB) =

Maximum a(t‘osteriori ( ): Pick the class with the
maximum p

terior probabillity.

Without knowing P(X),
can we turn this into the R = Unnormallzed Posterior

(normalized) posterior?

= argmax HP Xily)
=1

=




Bayesian Inference

Use the Law of Total Probability, foralli=1 ... k, where A, ... A, partition Q:

A piaB) - P(B,Ai)) _  P(BJA)P(A)
P(B) Zle P(B|A,)P(A;) discrete
(A‘B) P(B‘A)P(Ai) continuous
[P(BJAP(A)dA  ais
Without knowing P(X), “marginalized”
can we turn this into the B = Unnormallzed Posterior out

(normalized) posterior?

Yy = arg ma.x{ H P( X?;y)]
=1




Bayesian Inference

Q: What distinguishes Bayesian inference? A: Assume a
P(6) — prior



Bayesian Inference
4 = 4Xr'r.rn".wmr;
Given: |
P(Z|0) — probability density or mass function (likelihood)

P(6) — prior
(prior)(likelihood) — P(0)P(Z|0)

Goal: Compute the posterior =

evidence - P2



Bayesian Inference
Z p— )(." ,r'.r.'r".”-’.-’-'_'rf

Given:
P(Z|0) — probability density or mass function (likelihood)
P(6) — prior
(prior)(likelihood) — P(0)P(Z|0)

Goal: Compute the posterior = =

evidence P(Z)

Types of priors:
e Uninformative (Improper: not a probability (e.g. constant))
e Belief-based

e Conjugate to a likelihood: if the posterior is in the same family as
the prior.



Bayesian Inference

25 \\ -~  a=p=05 —
f N g=5pf=2] —
\ a=1f=3 —
2 B\ T2 2B =2 —
Example: Beta(a, ) is conjugate \ N
to a Bernoulli likelihood. 15 f |/ :
u .
https://en.wikipedia. L]
org/wiki/Conjugate_prior#Table of conjuga
te_distributions ols, g \
; 7P
o 0.2 0.4 0.6 0.8 1
Types of priors:

e Uninformative (Improper: not a probability (e.g. constant))
e Belief-based

e Conjugate to a likelihood: if the posterior is in the same family as
the prior.


https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions
https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions
https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions
https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions

Bayesian Inference
4 = 4Xr'r.rn".wmr;
Given: |
P(Z|0) — probability density or mass function (likelihood)

P(6) — prior
(prior)(likelihood) — P(0)P(Z|0)

Goal: Compute the posterior =

evidence - P2



Bayesian Inference
/4 = Xh'frm.f'm;
Given: |
P(Z|0) — probability density or mass function (likelihood)

P(¢) — prior
(prior)(likelihood) — P(0)P(Z|0)

Goal: Compute the posterior =

evidence - P2

__PO)P(Z)9)
[P(HZ) - [P(O)P(Z|6)db ]




Bayesian Inference
Z — X,f;-.rrrln-fﬂff

Given:

P(Z|0) — probability density or mass function (likelihood)
P(¢) — prior

Goal: Compute the posterior =

(prior)(likelihood)  P(0)P(Z]0)
evidence - P2

__PO)P(Z)9)
[P(QZ) - [P(O)P(Z|6)db ]

[ P(z""|Z) = /P<z”€“’\9)P(9\Z)d9 -- predictive distribution]




Bayesian Inference
Z — X“_F”-;”'”H

Given:
P(Z|0) — probability density or mass function (likelihood)
P(¢) — prior

Goal: Compute the posterior =

(prior)(likelihood)  P(0)P(Z]0)
evidence - P2

Like a posterior-weighted average of P(Z""|6)

A

[ P(z""|Z) = /P(Zn'eww)P(Q\Z)dg -- predictive distribution]




Review, 4-21

e How to turn an unnormalized posterior into a normalized posterior
e \What is Bayesian Inference?
e Typical definition of a posterior

e Predictive Distribution



Bayesian Vs. Frequentist

Frequentist

e Limiting relative frequencies => probability is an observed property
e Parameters fixed and unknown => no need for probability of parameter
e Procedures for long-run frequencies (e.g. 95% CI)



Bayesian Vs. Frequentist

Bayesian

e Probability is degree of belief
=> can derive probability of many things

e Can estimate probability of parameters

e Can draw inferences about parameter
probability distribution, point estimates, intervals

Frequentist

e Limiting relative frequencies => probability is an observed property
e Parameters fixed and unknown => no need for probability of parameter
e Procedures for long-run frequencies (e.g. 95% CI)



Bayesian Vs. Frequentist

Pro Bayes:

e Estimating distributions => uncertainty built in
e No need to choose model; always “admissible”
e Automatic regularization

Con:

e Need to assume prior (even if nothing can obviously work)
e Approximate solutions: tend to be a little less accurate for simple classification
/ regression problems



Bayesian Vs. Frequentist

Pro Bayes:

e Estimating distributions => uncertainty built in ,
. o There is at least one
e No need to choose model; always “"admissible situation where the model
e Automatic regularization performs at least as good as
any other model.
Con: \ %

e Need to assume prior (even if nothing can obviously work)
e Approximate solutions: tend to be a little less accurate for simple classification
/ regression problems



Revisiting N-Fold Cross-Validation

Goal:
Decent estimate of model accuracy

All data

train test

m-mm




Revisiting N-Fold Cross-Validation

Training
Data

Does the
model hold up?

Develo
-pment
Data

Set training
parameters

Testing Data




Revisiting N-Fold Cross-Validation

Goal:
Decent estimate of model accuracy

All data

train test

m-mm




Revisiting N-Fold Cross-Validation

Goal:

Select a super-reliable penalty (alpha)

(this is overkill)

| All data

train

test

test

test

Then pick best model and predict ->




Revisiting N-Fold Cross-Validation

Goal: Goal:
Decent estimate of model accuracy
(this is overkill)

Select a super-reliable penalty (alpha)

All data

All dat;

a

train test train

m-mm #

Then pick best model and predict ->

[ dov [wan
m | train |

test

test

test




Revisiting N-Fold Cross-Validation

Goal: Goal:
Decent estimate of model accuracy Select a super-reliable penalty (alpha)
(this is overkill)

| All data !

train dev test

m-mm | train__ | dev [train| | o
wain [ dev [ wain | [

Example: Assignment 3 Then pick best model and predict ->

All data

train test




Introduction Time Series Analysis

Goal: Understanding temporal patterns of data (or real world events)

Common tasks:

e Trend Analysis: Extrapolate patterns over time (typically descriptive).

e Forecasting: Predicting a future event (predictive).
(contrasts with “cross-sectional” prediction -- predicting a different group)



Introduction to Causal Inference (Revisited)

X causes Y as opposed to X Is associated with Y

Changing X will change the distribution of Y.

X causes Y <7Z>Y causes X



Spurious Correlations

Extremely common in time-series analysis.



Spurious Correlations

Extremely common in time-series analysis.

Age of Miss America

correlates with
Murders by steam, hot vapours and hot objects

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
25 yrs 8 murders
§23.75 yrs - pd
= §
& 6 murders =
5 22.5 yrs %
P 3
L g
<
E 21.25°yEs n
S 4 murders &
¢ :
< 20 yrs
18.75 yrs 2 murders
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-0~ Murders by steam == Age of Miss America

tylervigen.com


http://tylervigen.com/spurious-correlations
http://tylervigen.com/spurious-correlations
http://tylervigen.com/spurious-correlations

Introduction to Causal Inference (Revisited)

X causes Y as opposed to X Is associated with Y

Changing X will change the distribution of Y.

X causes Y <7Z>Y causes X

Y=1X=1)—PY =1X =0
Counterfactual Model: Exposed or Not Exposed: X =1o0r0
v JCoif X =0
- C]_ ltX — 1 (P!Clzl))

P(C=0)

Causal Odds Ratio: (chhzlj)

P(Cy=0)




Simpson’s “Paradox”

Y=1 Y=0
X=1 15 225
X=0 0375 .0875
Z = men

http://vudlab.com/simpsons/

Y=1 Y=0
1 .025
2625 1125
Z = women




Autocorrelation

“(a.k.a. Serial correlation).”

Quantifying the strength of a temporal pattern in serial data.

Requirements:

e Assume regular measurement (hourly, daily, monthly...etc..)



Autocorrelation

Quantifying the strength of a temporal pattern in serial data.

_ Which o
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o 20 40 B0 80 ] 5 10 15 20 25

. | . . . temporal
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-
wf 10
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5t 05 |
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) ) ) ) ) ) 20 40 60 B0

0



Autocorrelation

Quantifying the strength of a temporal pattern in serial data.

3 T T T T 40

strong autocorrelation

2| white noise ] B1

1t o
25 |
°l 0 |
o .
_ Which °|
9 20 20 &0 20 h ave >0 5 10 15 20 5
. | . . . temporal o
x| _ patternS? sl sinusoidal
of weak autocorrelation 1 10
151 o5 |
10 ool
5| el
199801 00203 200605 21007 201408 1o} - = = -

0



Autocorrelation

Quantifying the strength of a temporal pattern in serial data.

Q: HOW?



Autocorrelation

Quantifying the strength of a temporal pattern in serial data.

Q: HOW?

A: Correlate with a copy of self, shifted slightly.



Autocorrelation
Quantifying the strength of a temporal pattern in serial data.
Q: HOW?

A: Correlate with a copy of self, shifted slightly.

Y =13, 4, 4, 5, 6, 7, 7, 8]
correlate(Y[0:7], Y[1:8]) #lag=1

correlate(Y[0:-2], Y[2:8]) #lag=2



Autocorrelation

Quantifying the strength of a temporal pattern in serial data.

Q: HOW?

A: Correlate with a copy of self, shifted slightly.

Y = [3: 4, 4, 5, 6, 7, 7, 8]

correlate(Y[0:7], Y[1:8]) #lag=1

correlate(Y[0:-2], Y[2:8]) #lag=2



Review, 4-26 and 4-28

e Bayesian verse Frequentist Learning

e \Why /when to use Dev within folds of N-Fold CV
e Time series -- what distinguishes

e Causal Inference

e Autocorrelation

o Type of univariate time series

o LagPlots



Autoregressive Model

AR Models: }/t — f(}/f—la }/}—25 }/f—Sa rery }/}—ﬂ.a Et)
Linear AR model: Y} = o+ 51Y;—1 + BoYia+ ... + B, Yip + &



Autoregressive Model

AR Models: 1/1‘ — f(}/f—la Y}—Qa }/f—Sa "ty Y}—ﬂ.a Et)

Notation:  AR(1): 5? = By + 51Y;_4
AR(2): Yy =By + 51Yi1 + BYi o
AR(3): Y= By + BiYio1 + oo+ B3Yi3



Autoregressive Model

AR Models: 1/1‘ — f(}/f—la Y}—Qa }/f—Sa "ty Y}—ﬂ.a Et)

Notation:  AR(1): 5? = By + 51Y;_4
AR(2): Yy =By + 51Yi1 + BYi o
AR(3): Y= By + BiYio1 + oo+ B3Yi3

AR(0): Y; = 5,



Moving Average

Based on error; (a “smoothing” technique).

Q: Best estimator of random data (i.e. white noise)?



Moving Average

Based on error; (a “smoothing” technique).
Q: Best estimator of random data (i.e. white noise)?

A: The mean
Y, +Yi+Yio+..+Y,
p+ 1

FMA _
Yf —



Moving Average

Based on error; (a “smoothing” technique).
Q: Best estimator of random data (i.e. white noise)?

A: The mean

Yi+ Y+ Yo+ ..+ Y,

v MA _
|| : ! p+ 1

Simple Moving Average




Moving Average Model

In a regression model (ARMA or ARIMA), we consider error terms

Y: = fle, €—1, €49, €13, )



Moving Average Model

In a regression model (ARMA or ARIMA), we consider error terms

Y: = fle, €—1, €49, €13, )

Y, = pt e+ 0161 +be o+ ...+ 0,6,



Moving Average Model

In a regression model (ARMA or ARIMA), we consider error terms

Y: = fle, €—1, €49, €13, )

17},u+ef+91+

attributed to “shocks” -- independent, from a normal distribution

Notation: MA(U& ﬁ — 1+ € + e
MAQ2): Yi=p+ e + 0161 + Or649



ARMA Models

AutoRegressive (AR) Moving Average (MA) Model

ARMAR. QF ¥, = By + B1Yi1 + BoYia + ...+ B,Yi_, +
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example: Y is sales; error may be effect from coupon or advertising
(credit: Ben Lambert)



Time-series Applications

e ARMA

o Economic indicators
o System performance

o Trend analysis
(often situations where there is a general trend and random “shocks”)
e Univariate Models in General
Anomaly Detection

Forecasting
Season Trends
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Signal Processing

e Integration as predictors within multivariate models

statsmodels.tsa.arima_model



Review: 5-3

e Autoregression Model
e Notation

e Simple Moving Average
e Moving Average Model
e ARMA

e Applications of Time Series Models



